Technologies of Experience and Intravention: An Impossibly Floating Silent Room

ALBERTO ALTÉS
Architect, Lecturer, PhD Candidate
Umeå School of Architecture, Umeå University
Umeå, Sweden
alberto.altes@arch.umu.se

JOSEP GARRIGA
Architect, Lecturer
Umeå School of Architecture, Umeå University
Umeå, Sweden
josep.garriga@umu.se

Abstract
In relationship with the proposed dimensions of ‘worlding’ and ‘u-topos’, the paper aims at thinking through the collaborative process of conceiving and making an ‘impossible’ room inside Umeå School of Architecture: a small, more intimate, warm and silent space – a room that floats in the air – thought as an alternative to the excessively open, cold and loud spaces of the building. The room is at the same time a u-topian space and a practice of world transformation: an impossible room in relation to the difficulties of its materialization and to its performance as a critique of the discursive, regulatory and regulated space of the university; and an act of construction that operates not only through material re-arrangements and the physical transformation of the spaces of the school but also with important effects regarding symbolic capitals, relational ecologies, the lives of those involved, shared responsibilities and the establishment of the common.

Keywords:
Architectural Technology, Experience, Intravention, Affordance, Collaborative Practices, Movement

Movement and Situated Practice
“...The forms the humans build [...] arise within the currents of their involved activity, in the specific relational context of their practical engagement with their surroundings.” (Ingold, 2011: 10)

Technology in architecture and in architectural education has been and continuous to be approached more often than not from the point of view of epistemic traditions that tend to embrace the positivism of science, turning theories of construction, technology and architecture into operational rules that are taken for granted, and following paths that tend to reduce architecture to a science of building efficiently, economically and functionally.¹

¹ The influence in this respect of the work of Jacques-Nicolas-Louis Durand has been enormous and continuous to structure architectural education in the functional tradition of many polytechnical schools and universities. For an in-depth discussion of the problem of technology and science in architecture see for instance Pérez, Gómez, A. 1983. Architecture and the crisis of modern science. Cambridge, Mass.: MIT Press.
Architectural technology and theory have relied strongly in understandings of the world as representable through ideas and interpretations, along many assumptions based on conceptualizations of the relations between materials and design based on Aristotelian hylomorphism - which sustains that every thing results from an operation through which (preconceived) forms are imposed onto raw (inert) matter – and overtly mechanistic views of causality that privilege invariance and certainty, seen as the condition of possibility of scientific knowledge.

Technology seems to have become a dominating force, pushing architecture toward conceptual and material efficiency, the celebration of technique as an end in itself, and the cult of productivity\(^2\). Even in more recent and sensitive approaches to the conceptualization and pedagogy of architectural technology and construction, such as that of the now considered ‘bible’ of construction edited by the swiss architect and professor Andrea Deplazes, ‘*Constructing Architecture: Materials, Processes, Structures*’, technology is presented as a problem of ‘shaping’ and “the competence to create coherence regarding content and subject” on the grounds of a clear separation of invariable scientific knowledge from unpredictable nature and inert matter, and the subjective dictates of the designer/architect. The handbook is therefore based on a number of “technical and structural basics which establish a set of rules and regulations of construction principles and know-how that can be learned and which are wholly independent of any particular design or construction project” (Deplazes, 2008: 11)

On the contrary, the very Greek origin of the word Tekhné, pointing to notions of art and skill, locates technology in the realm of practice, as the primary human activity: the collaborative construction of reality. Human beings, we have learnt from Heidegger and Foucault, are primarily constructed through the non-discursive practices in which they take part, and a domain of knowledge is constituted for each technology that is deployed along these practices – thus the insistence and interest of Foucault in the importance of the inseparability of power and knowledge.

Inspired by the mobile and experiential philosophy of Bergson, as well as by more recent developments in the philosophy of science and technology that engage with explorations of the continuity between perception, thought and action, and understandings of life as movement, at the Laboratory of Immediate Architectural Intervention (LiAi), Umeå School of Architecture, we have started to rehearse diverse experiments aiming at the development of alternative approaches to architectural technology and its pedagogy based on a performative and caring engagement with situations and experience, and a passionate interest in materials and their ecologies.\(^3\)

The LiAi and the notion of Intravention

At the LiAi, we define architecture not as an ‘it’ but as a process, or perhaps an apparatus. Again: architecture is a verb, i.e. *to architect*. Supporting this active stance, we focus on the transformational nature of interventions performed in real times and places, and work through the concept of the performative (in relation to the speculative projective practices of most architectural production). We posit a new concept to further our work in these 'conditions': *intravention*.\(^4\) Although it is only a matter of a couple of letters, intra's focus on the ‘within' clearly establishes *intraventions* as already a part of the spaces and times in which they are

\(^2\) A separate paper could be dedicated to the influence of the building industry in contemporary architectural production and in society in general.

‘intravening’; quite a different focus than the ‘inter’.

This approach, combined with an ambition to enable pedagogical situations in which technology, theory and design are integrated as seamlessly as possible, has led us to propose the notions of technologies of experience, and technologies of intravention, to designate the ways in which we articulate and inhabit the processes of transformation of the situations we work with.

In relationship with the proposed dimensions of ‘worlding’ and ‘u-topos’, the paper is aiming at presenting and thinking through the collaborative process of conceiving and making an ‘impossible’ room inside Umeå School of Architecture: a small, more intimate, warm and silent space – a room that floats in the air – thought as an alternative to the very open, cold and loud spaces of the building. The room is at the same time a u-topian space and a practice of transformation of the world: an impossible room both in the sense of the difficulties of its materialization and in its performance as a critique of the discursive, regulatory and regulated space of the university, and an act of construction that operates not only through material re-arrangements and the physical transformation of the spaces of the school but also with important effects regarding symbolic capitals, relational ecologies, the lives of involved actors and the establishment of the common.

Affordances, Constructions, Architectures

“ [...] An affordance is neither an objective property nor a subjective property; or it is both if you like. An affordance cuts across the dichotomy of subjective-objective and helps us to understand its inadequacy. It is equally a fact of the environment and a fact of behavior. It is both physical and psychical, yet neither. An affordance points both ways, to the environment and to the observer.”(Gibson, 1979: 129) The project of construction of this room is part of a series of workshops entitled ‘Affordances, Constructions, Architectures’ through which we are trying to develop a more experiential approach to architectural technology. During the academic year 2013-2014, after having been in Umeå and inhabited the building of the school of architecture for more than two years, we had the idea of dedicating a series of workshops to the design and construction of an additional room that could improve our loud environment.

The impulse to make such a thing emerged from our lived experiences of the building in relationship with our teaching and researching activities and the many hours passed in it: increasingly, the lack of appropriate rooms for lectures, seminars and other similar activities was more and more pressing, as the school was growing in numbers of students and programs and the needs of different groups were hardly impossible to combine without conflicts in the booking of the three available lecture-ready rooms in the building; the very open design of the building, so attractive for architecture magazines and their fans, was proving to be problematic in a number of aspects such as the noisy environment, the lack of intimacy, the constant atmosphere of activity and stress and other consequences of the impossibility of ‘escaping’ its very openness; the slick and hard surfaces of white walls, glass, and polished concrete floors were starting to annoy us in their coldness and indifference, affecting also the motivation and moods of our students who were much more ready to engage in vivid discussions or interesting design processes in the few occasions in which we tested outside or off-campus locations, and who had complaints about the atmospheric qualities of the existing rooms, the hardness of surfaces and the strange quality of the air in this so-called intelligent building.5

Key to the very possibility of acting within the conditions of this situation were also the specific qualities of the architectural design of the building, which includes a number of double height, open spaces in certain areas of its relatively simple, 7 x 7 meter grid-structure of steel pillars and beams of square section. The typical situation in the building consists of prefabricated

5 The technification of the building, even though it was probably conceived to provide conditions of comfort, ends up turning the school into an unhealthy environment that is uncomfortable to inhabit and difficult to live with.
concrete ‘T’-beams resting on the upper side of the steel-plate beams to configure a structural floor. In some areas, these ‘T’-beams are absent and double-height spaces appear generating very different atmospheric and functional conditions.

On the basis of the ‘availability’ of such volumes of air within the building – the double-height signified for us the possibility of occupation – we decided to intervene by thinking and exploring the possibilities of introducing a ‘floating’ room in one of them, a room that could cling on to or rest on the existing beams and simply ‘float’ there, not touching the floor and, very importantly, not perforating, modifying or attaching itself to the existing structure by any means.

The proximity and availability of wood products as well as the existing local and regional traditions of timber construction, together with the relative simplicity and immediacy with which it is possible to engage in making processes with this material, made us feel the need of focusing on timber as the main, if not the only material, and eager to explore the limits of its supportive technologies.

Duration and Effects

As we will try to explain below, we believe that one of the most interesting aspects of the project - beyond its organization and steps - is the way in which the activity and movement(s) it entailed has progressively generated various and multiple effects beyond the production of the room itself. These effects include not only the co-production of challenging pedagogical situations, and moments of intense coexistence among students, faculty and things during the different phases but also: the motivated engagement – far beyond their responsibilities – of technical and administrative staff as well as other actors; the interest of students and faculty from other programs and years and the generation of diverse situations of encounter and exchange between them and us; the emergence of conflicts with a number of students and faculty that, working in the proximity of the room, felt threatened and disturbed by its presence and our presence – making us realize that we had not calculated its power in that sense but had only thought of its friendly sides and its gift condition; conflicts with other members of the faculty who felt excluded from the process and decided to act against it through regulatory structures, almost managing to stop the construction; the reactions of those who subsequently took sides in these conflicts and stood up to defend the room or looked aside; the sudden involvement of instances of the administrative apparatus of the university, which had not been involved in any other matters until that moment but were awakened by the threat of conflict and unknown risks; the emergence of previously un-signaled limits to what was and was not possible to make/build in the school; and many other…

The first in the series of technology and design workshops was presented as an exploration of the possibilities and limits of wood construction and classroom architectures, to generate an experience of silence, intimacy and comfort, and develop a silent reading/seminar room to be built with a limited amount of materials and resources and a number of additional conditions, such as an approximate surface of 25 m² to host around 25 people, a maximum of 3m³ of glue-laminated timber in different sizes (obtained through an agreement with a local producer), a budget of 20,000 SEK, a fixed position 2.2 m above the ground of floor 3 in the school of architecture, and the need to solve not only the structural challenges of resting on top of the
existing beams and breaching the seven meter span between them, but also the acoustic and environmental challenge of making the room ‘silent’, while ensuring adequate conditions of ventilation and light.
Technologies of Experience

This first workshop, run in collaboration with our colleagues Claudi Aguiló and Roger Tudó, proceeds through a series of lectures on architectural technology and experience, materials, energy flows and more specifically timber construction, mixed and combined with discussions, conversations and design group-work organized around specific aspects such as the structural stability and supporting strategies, the discontinuities in the ‘envelope’ of the room, and the energetic strategies to deal with air, light and heat. The workshop locates technology at the center of a triangle of matter, energy and experience, and sets the terms for an exploration of possible strategies of organization, comfort and support that privilege actions, affordances and atmospheres, as dimensions of experience.

The outcome of the workshop is a design that combines some of the reflections and findings of the work done in the groups as a result of intense discussions aiming at an embracing of complexity: a shape that behaves well structurally in relationship with its specific situation and the seven meter span while simultaneously solving its programmatic requirements as a small stepped seating ‘arena’, with a constructive section that works both for the facades and the floor, and a different and experimental roof solution. The room consists of two main walls that are conceived as structural trusses, made of ‘glulam’ profiles and clad with construction plywood boards. The trusses are then joined transversally with simpler ‘glulam’ beams that bridge the shorter span and stabilize the whole with the help of the roof.

The roof solution deserves some attention as it illustrates quite well the approach followed to combine diverse challenges related to energetic, material and experiential aspects in search of what Bergson would call qualitative multiplicities. It consists of an experimental reformulation of the functioning principle of the silencer through which the roof is treated as a permeable membrane made of distinct (box) elements: it allows the air inside the room to exit upwards as it gets warmer as a result of the heat released by its users, while preventing (to some extent) the intrusion of the ambient noise which is caught inside the boxes through small holes like those of a silencer; it filters the light that gets in the room and acts simultaneously as structure and cladding. The 36 acoustic box elements are constructed and assembled without screws or nails, through an ingenious system of rotating ‘keys’ that close the boxes while giving them the stability they need to rest on 6 glue-laminated timber beams. The design of the boxes was improved and developed in a dedicated 1-week long, timber construction workshop and they can be replaced, improved or transformed further at any time, one by one.

6 Claudi Aguiló and Roger Tudó are architects and partners in dataAE and H-Arquitectes, respectively, architectural practices that have received numerous awards and great reviews. Both teach architectural design and construction at the ETSASV School of Architecture in Sant Cugat, Barcelona.
Beyond design

A subsequent graphic expression workshop provided an opportunity to construct a set of architectural drawings to exhibit and explain the silent room to the rest of the school but also to reflect about and develop the proposed constructive solutions. In this workshop, standard graphic tools and drawing documents are questioned in order to explore alternative, more complex drawings that combine the atmospheric qualities and the performance of the room with the constructive layers and the narrative sequence of the building process.

The design of the room is further developed through tests and discussions in the framework of daylight and structural workshops with the presence of expert guests. Authorship starts blurring. The symmetric disposition of the longitudinal section of the room is questioned in relationship with the asymmetric light conditions of the location, and the section finally adapted to incorporate 3 of the windows of the school building and filter the light that comes through them, creating also a differential space to seat or rest by them. The structural skeleton of the room is rethought and adjusted to fit the dimensions of the available ‘glulam’ sections, and the main longitudinal walls are decomposed into two elements: an upper truss working under compression and resting on the existing steel beams, and a lower secondary truss-like structure that hangs from the upper truss under tension. Plywood boards are then used as the cladding and finishing surface with a structural, load-bearing function of connecting the two parts of the truss (which are also additionally connected with structural screws used internally ‘glulam’ to ‘glulam’).

Executive Development and Symbolic Capital

At this point, and for a number of weeks, we engage as coordinators of the project in a phase of executive design development that requires the articulation of all the advices and changes into a new set of complete construction drawings, basic structural calculations, and the reestablishment of communication with Martinsons AB (the local wood producer with whom we have an agreement to get structural wood) to discuss their involvement with technical support.

Another key moment arrives when members of staff and faculty linked to the working environment committee decide to raise questions regarding the silent room project in working environment meetings, reporting what they see as potentially dangerous situations in the construction workshop planned, which involves working together with the students in the construction of the room. This alarms the whole administrative body of the Faculty of Science and Technology to which the school of architecture belongs, and results in the establishment of a number of (tough) conditions for us to comply with in order to be able to proceed with the scheduled workshop. This happens just a few weeks before the scheduled dates for the workshop, and forces us, through an official communication of the acting head of the department at that moment, to provide a proof of a structural check of the resistance and load bearing capacity of the steel beams, and to elaborate a document specifying and evaluating all the possible risks associated to each of the planned steps of the construction.

In the available time, while we were working on the production of the safety and security documents, we contacted the architectural office responsible for the design of the school (Henning Larsen) and the building engineering company in charge of the structural calculations.
(Tyréns) and asked them for information about the structural design of the building without success. We never got any information back. We calculated the total weight of the room, around 2700 Kg, and its working loads, and made some basic checks, particularly in relationship with the connection of the plywood boards to the 'glulam’ trusses through screws and the shear forces involved and, aware of the large safety margins we had due to both the geometry and the dimensioning of the ‘glulam’, we finally managed to set up a meeting involving the care-takers of the school building and engineers from the company that owns the building that the university rents (Balticgruppen). After some negotiations, they accepted to check the structural behavior of the existing steel structure in relationship with the added load and forces that our room would generate, and a few days later, we got an email with a screenshot from the calculation software showing how the maximum load and stress capacity of the steel beams were many, many times that of the forces introduced with the room. The information was circulated to the administration of the school as well as to the wood producer and a decision was taken to continue as planned and proceed with the construction workshop provided that the safety documents were in place before we started.

The working environment group continues to get involved in the process now demanding us to walk around the school and inspect the areas in which we will work and assemble the parts, as well those in which we will place desks with tools and equipment. This creates tensions among certain master’s thesis students who have not been informed by their studio coordinators of our agreement with them to use the space for two weeks. The students don’t feel like moving from where they are and it takes some discussion and work to finally have them accepting a temporary allocation in one of the seminar rooms, which is less noisy and exposed than the spaces in which they were. The complete lack of activities of the working environment committee for a long time due to the turmoil and transitional state generated with the dismissal of our rector Peter Kjaer, contrasts radically with a sudden awakening and a will to take part/interfere in the process of building the silent room, which affects incredibly the amount of work that we are forced to put into the project just to make it happen and reveals tensions and disagreements that we weren’t aware of.

The room, even before its construction, is already having powerful effects in the symbolic and relational ecologies of the school and its inhabitants, performing our colleagues and us in unexpected ways, and forcing us to improvise and devise alternative paths, directions and procedures.

First Construction Workshop: Becoming a Team

Working and assemblage areas are marked in the school a few days in advance of the workshop, and Martinsons delivers the structural wood profiles and steel connections according to the last set of drawings on the Friday prior to the starting of the workshop which is scheduled for Monday 12th of May 2014 at 9.00h. During the weekend, we check the delivery and carry out some tests to show the students the kinds of joints that we will work with and the steps in their execution. We realize that some beams/parts are missing which means that in order to have all the necessary pieces, we will have to include an extra 160 km trip just before starting on Monday to go and get them from the factory in Bygdsljum.

The workshop starts as planned with a general introduction, safety and security instructions, the assignation of tasks to the different groups and a tour through the different working areas. We

We were aware of and confident with our safety margins both in terms of the design – that solves the span through the form of the trusses – and in terms of the over dimensioning of the ‘glulam’ profiles which we had to adapt to the available sections at that moment. Since ‘Martinsons’ was not able to spend time in the processing of the glue laminated beams and cut bigger sections in half, we had to go with the smaller sections readily available, which were larger than the ones we had originally designed.
carry out a few tests with the machines that will be used to remind the students how to operate them (all of them have gone through a course at the beginning of the year that introduces them into the intricacies of the workshop.)

In these first steps, the size and characteristic of the joints of ‘glulam’ elements requires the invention of screwing techniques, as well as the re-appropriation of technology and things such as a steel pillar for instance. Working together is absolutely necessary and some decisions have to be made as we go.

By the end of the first day, the four parts of the main structural elements – the trusses – are assembled and transported from the working areas to their future location. This happens in an atmosphere of collaboration, contained joy and excitement, as the tensions and difficulties were well known by all and everyone now silently acknowledges that we are in fact building the room!

During the second day, the frames of the trusses are connected with structural screws and with plywood boards on one of the sides, and then flipped. Cellulose-based insulation is placed in between the frames and the trusses are closed with plywood boards also on the inside. Finally, the metallic joist hangers are also screwed in place, as we learn that the mini crawler crane that we had agreed to have in order to lift the trusses in place cannot make it until the 4th day instead of the 3rd day as planned. We dedicate the third day to preparing the site for the lifting of the trusses and collaboratively turning and sliding them around until we lift one of them and leave it leaning against the steel beams. The beams are cleaned and rubber plates are fixed to them in the right positions to receive the trusses.

On Thursday, a ramp has to be quickly improvised to allow the crawler to go up the stairs to the site, and difficulties arise during this process. The machine is very heavy and the ramp needs additional timber ‘bands’ to increase the traction of the crawler. Some of us have to push and balance the machine to make sure it actually goes up. We are all sweating and nervous but there is great expectation in the school and students from all years as well as our colleagues join us around the site during the preparations for the lifting. Excitement is again contained in the focus and the tension of the situation, we are all enjoying it but we all understand it is a crucial moment. We can see students taking responsibility, clearing up areas, and organizing some of the processes that they have themselves understood as necessary and crucial.

Håkan Hansson and Kent Brodin, our workshop technician and care-taker, play an important
role in the process of enabling the operation, coordinating the crane company with our process and helping us communicate our plans, they are also fully engaged in the difficult process of actually lifting the trusses in place, which requires several attempts and our help in pushing/holding the truss up to release some of the load from the machine. At times, we are side by side with Håkan, sweating in focus and effort, and our gazes meet in understanding. We already know what to do next. And the process is challenging but attractive and interesting. We all understand that we are learning, together.

The trusses are finally up in place and the following day is dedicated to placing the floor beams and cladding them from the interior with plywood boards. We use a whole extra week, now with the help only of a couple of students, to finish the cladding and a place the roof beams in order to prepare the room for a first preliminary opening.

We present the project and the process to students and faculty, and we decide to have our Spring Final reviews in the room, what turns out a great success.

Second Construction Workshop: Love and Leviathan

During a second construction workshop, after the summer, we invite newly arrived students in the program to join the process and meet the other class that is now starting their second year in the masters. As a warm-up construction workshop, they take care of finishing the insulation of the bottom of the room and the exterior cladding, as well as sliding fabric-based doors to control the relationship with the windows and filter the light that goes into the room. We also take care of the door of the room, and draw an electrical wire in so that we can plug computers and screens for the reviews and seminars. A team takes care of improving and finishing the roof boxes and puts them in place and the room is finally ready for a proper opening. We improvise a system to hang up A1 prints on the walls with the help of clothespins, and shortly after we are all enjoying our first reading seminar inside when one of our students sighs and says out loud: “I love the silent room!” We all laugh in approval.

During the summer, and without our knowledge, the working environment committee reports to the facility management unit of the university – Lokalförsörjningsenheten – the existence of the room (something that we explicitly announced we would do once the room was properly finished), and they decide to carry out an inspection of the room while we are not there and
before the room is finished (this happened before the second construction workshop described above). The inspection results of course in the detection of a series of deficiencies, and later during the Autumn term we are told by the acting head of the department that we the room can’t be used and that most likely it will have to be taken down. After a number of great reading seminars inside, the whole class is extremely disappointed about having to go back to the cold spaces of the seminar rooms, but the orders are executed and the room is even locked with a chain.

The main deficiencies have to do with fire regulations, as the room hangs in the way of several sprinklers and in the case of a fire starting below the room, the sprinklers would not be able to put it out. The room lacks a specific fire treatment of its inner and outer surfaces and a fire safety plan has not been attached to its design and construction. Now suddenly the experimental construction of a 1:1 prototype inside a school of architecture is treated as if it were a regular building project, like an extension of the school’s facilities, and compliance with all building regulations is demanded. But the workshop was authorized and the school is always hosting all kinds of 1:1 prototyping activities which had never been questioned or evaluated in this way. What has happened? What has changed? We ask ourselves. What kind of symbolic and regulatory borders has the room crossed or broken so that the apparatus of bureaucratic and managerial control that have never before been interested in or visited our school are suddenly eager to intervene, monitor and police our activities? What would have happened if the working environment committee in our school had stayed inoperative and dormant as it was before the silent room project started? Why is the project of the room seen and experienced differently from those of other 1:1 interventions and prototypes developed and built in other spaces and times of the school?

More Durations and More Effects: Diffracting Values

We would like to look at and understand the room as a complex thing, but also, more interestingly as a situation and as an event or phenomenon, as a complex set of “agential intra-actions of multiple material-discursive practices and apparatuses of bodily production” (Barad, 2007:140) where the things, the apparatuses, the room, the crane, the regulations, the tools, are not mere instruments of observation and measurement but “boundary-drawing practices – specific material reconfigurings of the world – which come to matter.” (Barad, 2007:140) Understanding it in these terms and including the process of thinking, making and feeling it, it is possible to evaluate its performance in multiple ways disclosing an alternative set of values. The project challenges the notion of class-room, combining the categories of prototype, 1:1 architectural model, sauna, reading seminar and extension of the school’s facilities, the room is almost immediately included in the booking system of the school and used by us and other members of staff and students as one more available, functional and warm space, although it is only equipped with a temporary access in the form of a detached stair case and is not as silent as one would have wanted. It affects the mental ecologies of actors present in the school but not directly involved in the situation – its symbolic status perhaps drawing people into the situation and encouraging acts of sabotage and interference, which in turn sharpen our attention and push us into a careful practice of attention to safety and organization. It challenges, if only momentarily, the hierarchy of academic situations and university roles, creating spaces and times of shared co-respondence and hand-in-hand shared tasks, expertises, and bodily efforts - knowledge, or rather understandings, are collectively produced. It establishes bonds and affinities with local actors, people, companies and institutions that go beyond the mere “we did something in your institution once” into the realm of actually getting to know the other and establishing a more solid link. The articulation of the process and the design approach based on relatively simple and straightforward constructive solutions makes it possible for everyone to actually
engage actively in the making of the room, and enables the construction of a cooperative and collaborative atmosphere and a sense of collaborative ownership: the physical and mental intensity of the workshop and its tasks bring students and faculty together, sharing, exchanging and helping each other – since the situation affords active participation and meaningful contribution, involved actors are more likely to develop a fidelity to the situation that conjures a sense of responsibility and shared ownership.8

The room is also an interesting architectural thing which not only constitutes a new seminar facility but also defines a new working area under it with a different wooden ceiling and atmospheric qualities. It can host different activities and be used in multiple ways (lecture hall, discussion room, meeting place, calmer atmosphere, resting space, as a room for reviews or projections, as a room in which one can lie, relax, take a nap or simply take a break while looking at the river through the windows…). It is the result and the proof of collective expertise and know-how developed during a few years of exploration of an alternative and integrated approach to architectural technology that shows that it is actually possible to engage in similar projects successfully if we cooperate. It has managed to awaken the interest of the owners of the building as well as of the local press that published an article about the room, and in some ways, the room and its stories have become a kind of material-manifesto of the laboratory, embodying and articulating many of the matters of concern and categories with which we are working at the LiAi, and drawing the attention of the students in other programs and years as well as of our colleagues, who have approached us with questions and comments and initiated conversations and discussions about what we do and its intentions or values. The experience of building the room has changed us probably just as much as we have transformed the world through it. We believe that it constitutes an example of how to become collectively through the establishment of relations of responsibility that emerge from close coexistence, from proximity and closeness to others – human and non-humans – within practices of making the world; a case of responsible engagement in a practice of architecting that proceeds unawarily of distinctions between thinking/making/feeling and caring, through “an ethics of worlding” (Barad, 2007: 392) that cares about what matters.
References

The Master’s Program LiAi (students+faculty) conceived the design and construction of the ‘Silent Room’, a floating and quiet addition to Umeå School Architecture.

Alberto Altés and Josep Garriga were the coordinators of 2 Technology and Design workshops where the LiAi students developed a small room of about 30 m² that doesn’t occupy the existing floor areas of the school’s building but “float”, hanging from the existing steel beams in one of the double-height spaces of the school. The room was thought to afford an atmosphere of silence/intimacy that could host reading seminars. And apart from the obvious requirements of structural stability, the challenge was also to work within the limits of a very restricted budget and combine acoustic performance with a comfortable temperature and adequate air renewal rates.

The project has been developed as a structural and acoustic experiment that explores the possibilities of wood construction and classroom architectures, and aims at improving the school’s environment with a ‘floating quiet gift’ that is initially conceived as a temporary addition to the school.

The final design includes 2.7m³ of GLULAM, about 90 plywood boards, 8,000 board screws, 200 WT-T construction screws, and a few other materials, adding up to around 2800 Kg.