Chalmers Conferences, LCM 2013

HISTORIC AND FUTURE FLOWS OF CRITICAL MATERIALS RESULTING FROM DEPLOYMENT OF PHOTOVOLTAICS
Till Zimmermann

Last modified: 2014-09-11

Abstract


Within this study, the flows of indium, gallium, cadmium and tellurium used in CIGS, CdTe and a-Si cells are analyzed looking at historic installations and potential future developments. Additionally to the material demand, secondary material flows arising at the cells’ end of life are quantified. The study shows that a significant growth in demand resulting from future photovoltaic installations is to be expected. Also, flows of secondary materials will develop to a significant scale showing the necessity of an efficient recycling infrastructure.

Keywords


MFA; thin-film photovoltaic; secondary materials; material demand; recycling potential

References


Andersson, B. A. (2000). Materials availability for large-scale thin-film photovoltaics. Progress in Photovoltaics: Research and Applications, 8, 61–76. Retrieved from

Azzopardi, B., & Mutale, J. (2010). Life cycle analysis for future photovoltaic systems using hybrid solar cells. Renewable and Sustainable Energy Reviews, 14(3), 1130–1134. doi:10.1016/j.rser.2009.10.016

Berger, W., Simon, F.-G., Weimann, K., & Alsema, E. A. (2010). A novel approach for the recycling of thin film photovoltaic modules. Resources, Conservation and Recycling, 54(10), 711–718. doi:10.1016/j.resconrec.2009.12.001

Buchert, M., Schüler, D., & Bleher, D. (2009). Critical Metals for Future Sustainable Technologies and their Recycling Potential. UNEP report. Darmstadt.

Cullen, A. C., & Frey, H. C. (1999). Probabilistic techniques in exposure assessment: A handbook for dealing with variability and uncertainty in models and inputs. New York: Plenum Press.

El Chaar, L., lamont, L., & El Zein, N. (2011). Review of photovoltaic technologies. Renewable and Sustainable Energy Reviews, 15(5), 2165–2175. doi:10.1016/j.rser.2011.01.004

EPIA. (2011). Solar Generation 6: Solar Photovoltaic Electricity Empowering the World. Brussels.

EPIA. (2012). Global market outlook for photovoltaics until 2016. Retrieved from http://files.epia.org/files/Global-Market-Outlook-2016.pdf

European Commission. (2010). Critical raw materials for the EU. Report of the Ad-hoc Working Group on defining critical raw materials. Brüssel.

Fthenakis, V. (2009). Sustainability of photovoltaics: The case for thin-film solar cells. Renewable and Sustainable Energy Reviews, 13(9), 2746–2750. doi:10.1016/j.rser.2009.05.001

Gößling-Reisemann, S., Knak, M., & Björn, S. (2009). Lifetimes and copper content of selected obsolete electric and electronic products. In L. Hilty, X. Edelmann, & A. Ruf (Eds.), Resource Management and Technology for Material and Energy Efficiency. Dübendorf, Schweiz.

Jäger-Waldau, A. (2011). PV status report 2011: Research, solar solar cell production and market implementation of photovoltaics. Luxembourg: Office of Official Publications of the European Communities.

Kuitche, J. M. (2010). Statistical Lifetime Predictions for PV Modules. Retrieved from http://www1.eere.energy.gov/solar/pdfs/pvrw2010_kuitche.pdf

Kumar, S., & Sarkan, B. (2013). Design For Reliability With Weibull Analysis For Photovoltaic Modules. International Journal of Current Engineering and Technology, 3(1), 129–134.

Maycock, P. (2007). 2006-2015 World PV Market: Technology & Cost. Retrieved from http://www.ncsl.org/print/energy/PMaycockSolar1007.pdf

Maycock, P. D. (2005). PV review: World Solar PV market continues explosive growth. Refocus, 6(5), 18–22. doi:10.1016/S1471-0846(05)70452-2

Moss, R. L., Tzimas, E., Kara, H., & Kooroshy, J. (2011). Critical Metals in Strategic Energy Technologies: Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies. JRC Scientific and technical reports. Retrieved from http://setis.ec.europa.eu/newsroom-items-folder/copy_of_jrc-report-on-critical-metals-in-strategic-energy-technologies/at_download/Document

OECD. (2001). Measuring Capital - OECD Manual: Measurement of capital stocks, consumption of fixed capital and capital services. Retrieved from http://www.oecd.org/std/nationalaccounts/1876369.pdf

Oguchi, M., Kameya, T., Yagi, S., & Urano, K. (2008). Product flow analysis of various consumer durables in Japan. Resources, Conservation and Recycling, 52(3), 463–480. doi:10.1016/j.resconrec.2007.06.001

PHOTON. (2012). Das Solarstrommagazin: April 2012 - Anteile der verschiedenen Zelltechnologien, weltweite Solarzellenproduktion 1999 bis 2011. Photon Das Solarstrom Magazin, (4).

Raugei, M., & Fthenakis, V. (2010). Cadmium flows and emissions from CdTe PV: future expectations. Energy Policy, 38(9), 5223–5228. doi:10.1016/j.enpol.2010.05.007

Sherwani, A., Usmani, J., & Varun. (2010). Life cycle assessment of solar PV based electricity generation systems: A review. Renewable and Sustainable Energy Reviews, 14(1), 540–544. doi:10.1016/j.rser.2009.08.003

Speirs, J., Gross, R., Candelise, C., & Gross, B. (2011). Materials availability: Potential constraints to the future low-carbon economy. Working paper.

Tasaki, T., Takasuga, T., Osako, M., & Sakai, S.-i. (2004). Substance flow analysis of brominated flame retardants and related compounds in waste TV sets in Japan. Waste Management, 24(6), 571–580. doi:10.1016/j.wasman.2004.02.008

U.S. Department of Energy. (2011). Critical Materials Strategy. US DOE report.

Wilker, H. (2010). Leitfaden zur Zuverlässigkeitsermittlung technischer Komponenten: Mit 86 Tabellen, 86 Beispielen (2nd ed.). Norderstedt: Books on Demand.

Zuser, A., & Rechberger, H. (2011). Considerations of resource availability in technology development strategies: The case study of photovoltaics. Resources, Conservation and Recycling, 56(1), 56–65. doi:10.1016/j.resconrec.2011.09.004


Full Text: PDF