Lean Thinking and Target Value Design: Overcoming the Hurdle of First Cost

Zofia K. Rybkowski, PhD
Assistant Professor
Texas A&M University
College Station, Texas
zrybkowski@tamu.edu
It is a curious thing to observe how almost all patients lie with their faces turned to the light, exactly as plants always make their way towards the light; a patient will even complain that it gives him pain lying on that side.

"Then why do you lie on that side?" [I ask]. He does not know—but we do.

It is because it is the side towards the window.

What is Evidence-Based Design?

Roger Ulrich’s discovery:

Patients recovering after Cholecystectomy between 1972-1981, in a Pennsylvania hospital:

1) Those who saw trees through windows spent less time in hospital than those with views of a brick wall (7.96 days vs. 8.70 days).

2) Those with view of trees took fewer doses of moderate and strong analgesics.

What is Evidence-Based Design?

Example of collective results from meta-analyses
(search by *desired outcome*)

What has already been done wrt EBD?

<table>
<thead>
<tr>
<th>Impact on Patients</th>
<th>Impact on Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ sleep</td>
<td>↑ performance of (older) staff</td>
</tr>
<tr>
<td>↓ pain</td>
<td>↑ glare</td>
</tr>
<tr>
<td>↓ agitation</td>
<td>↑ ability to perform nightshift</td>
</tr>
<tr>
<td>↑ satisfaction with stay</td>
<td>↓ agitation</td>
</tr>
<tr>
<td>↓ vitamin D metabolism</td>
<td>↑ job satisfaction</td>
</tr>
<tr>
<td>↓ hyperbilarubinaemia</td>
<td>↓ back pain</td>
</tr>
<tr>
<td>↓ pain medication</td>
<td>↓ time wasted walking</td>
</tr>
<tr>
<td>↓ length of stay</td>
<td>↓ communication with patient</td>
</tr>
<tr>
<td>↓ medical errors</td>
<td>↓ communication between staff</td>
</tr>
<tr>
<td>↓ incidence of aspergillus</td>
<td>↓ stress</td>
</tr>
<tr>
<td>↓ nosocomial infections</td>
<td>↓ fatigue</td>
</tr>
<tr>
<td>↓ transfers between rooms</td>
<td>↑ staff retention</td>
</tr>
<tr>
<td>↓ falls</td>
<td>↓ error prone-ness</td>
</tr>
<tr>
<td>↑ privacy</td>
<td></td>
</tr>
<tr>
<td>↑ loneliness</td>
<td></td>
</tr>
<tr>
<td>↑ support from family members</td>
<td></td>
</tr>
<tr>
<td>Impact on Patients</td>
<td>Impact on Staff</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>↑ sleep</td>
<td>↑ performance of (older) staff</td>
</tr>
<tr>
<td>↓ pain</td>
<td>↑ glare</td>
</tr>
<tr>
<td>↓ agitation</td>
<td>↑ ability to perform nightshift</td>
</tr>
<tr>
<td>↑ satisfaction with stay</td>
<td>↓ agitation</td>
</tr>
<tr>
<td>↓ vitamin D metabolism</td>
<td>↑ job satisfaction</td>
</tr>
<tr>
<td>↓ hyperbilirubinaemia</td>
<td>↓ back pain</td>
</tr>
<tr>
<td>↓ pain medication</td>
<td>↓ time wasted walking</td>
</tr>
<tr>
<td>↓ length of stay</td>
<td>↓ communication with patient</td>
</tr>
<tr>
<td>↓ medical errors</td>
<td>↓ communication between staff</td>
</tr>
<tr>
<td>↓ incidence of aspergillus</td>
<td>↓ stress</td>
</tr>
<tr>
<td>↓ nosocomial infections</td>
<td>↓ fatigue</td>
</tr>
<tr>
<td>↓ transfers between rooms</td>
<td>↑ staff retention</td>
</tr>
<tr>
<td>↓ falls</td>
<td>↓ error prone-ness</td>
</tr>
<tr>
<td>↑ privacy</td>
<td></td>
</tr>
<tr>
<td>↑ loneliness</td>
<td></td>
</tr>
<tr>
<td>↑ support from family members</td>
<td></td>
</tr>
</tbody>
</table>

Example of collective results from meta-analyses (search by design intervention)

What has already been done wrt EBD?
EBD is being used to convince facility decision-makers that initial capital costs result in long-term cost savings (Berry et al. 2004).

Approximate cost = $12 million

Approximate benefit = $11.5 million

1.04 yrs

Breakdown of Hospital Expenses

- Employee Benefits (8%)
- Professional Fees (6%)
- Medical Supplies (3%)
- Drugs & Pharmaceuticals (5%)
- Food (4%)
- Fuel & Utilities (6%)
- Contracted Services (7%)
- Capital Expenses (6%)
- Other Expenses (5%)

Why is EBD financially important?

Why is EBD financially important?

Why is EBD financially important?

Why is EBD financially important?
Goal:

Help make EBD financially feasible.
enter

TARGET
VALUE
DESIGN
How do we set prices?

What is Target Value Design?

Integrated Project Delivery

Adapted from MSA (2004).
Integrated Project Delivery: Why co-location works

The role of cost sharing

From Clifton et al, *Target Costing: Market-Driven Product Design*, figure 5.2, p. 73

The importance of flexible cost boundaries

Impact of Target Value Design

Comparison of two similar projects using different project delivery systems

<table>
<thead>
<tr>
<th></th>
<th>St. Olaf Fieldhouse</th>
<th>Carleton College Recreation Ctr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion Date</td>
<td>August 2002</td>
<td>April 2000</td>
</tr>
<tr>
<td>Project Duration</td>
<td>14 months</td>
<td>24 months</td>
</tr>
<tr>
<td>Gross Square Feet</td>
<td>114,000</td>
<td>85,414</td>
</tr>
<tr>
<td>Total Cost (incl. A/E & CM fees)</td>
<td>$11,716,836</td>
<td>$13,533,179</td>
</tr>
<tr>
<td>Cost per square foot</td>
<td>$102.79</td>
<td>$158.44</td>
</tr>
</tbody>
</table>

Medical Office Building
3 storey
69,251 SF

Benchmark: $22 M
Target Cost: $18.9 M (approx. 14% below benchmark)
Actual Cost: $17.9 M (approx. 19% below benchmark)

TVD Early experimental results

Enter Target Value Design
California Pacific Medical Center (850,000 SF; 550 beds)

Cathedral Hill Hospital

California Pacific Medical Center is committed to a vision of healthcare for our community that will encompass a new state of the art facility and programs that will fulfill our mission of Clinical Excellence, Education, and Research.

The patient and family experience comes first:

- Patient-focused care
- Private patient rooms
- Accessibility and ease of way-finding
- Comfortable and varied environments
- Healing environments with natural light
- Visitor hospitality lounges on each floor
- Private medical consulting rooms
- Pleasant dining areas
- Awareness of diversity of cultures
- Parking convenience
- Efficient intercampus transfer and mobility
- One stop registration for all OP [operations]
- Easy access to emergency services
- A design that focuses on the patient
- Physician and staff friendly
- Sustainable
- Cost efficient and constructible

Research: The Cathedral Hill Hospital

Integrated Project Delivery: Co-location

Lean Project Delivery

Design Engine
Culture of
Continuous Improvement

Pull Pricing
Pull Scheduling

Relational Contract

Pull Scheduling:
Last Planner ("Big Room") meeting

Pull Pricing:
Target Costing ("Big Room") meeting

Design Engine:
Cluster Group meeting

Design Engine:
Subcommittee meeting

Meetings

Setting the cost target against Market Cost

- $753.19/SF Average Adjusted Market Cost

- $654/SF Allowable Cost

Methodology

Incentive plan to meet Allowable Cost

Incentive plan to reach below Allowable Cost

Contractual motivators

Methodology

Risk Sharing

Risk Sharing

Scope change

Lean Project Delivery

- Increasing the relatedness of members of the design and construction team (the "Integrated Project Delivery Team" or "IPD Team");

- Collaborating throughout design and construction with all members of the IPD Team;

- Planning and managing the Project as a network of commitments;

- Optimizing the Project as a whole, rather than any particular piece;

- Tightly coupling learning with action - Promoting continuous improvement throughout the life of the Project (Kaizen)
Lean Training

Introduction: Lean History, Concepts & Methods

Basic Training
- Value Stream Mapping
- 5S
- Reliable Promising
- Learning from Experiments & Breakdowns
- Choosing by Advantages
- A3 Reports

Lean Project Delivery
- Last Planner Process
- Target Value Design
- Design Management
- Supply Chain Management
- Design of Construction Operations

Lean Management for Supervisors
- Leader Standard Work
- Daily Accountability Process
- Visual Controls
- Developing People
- Leading Change
- Problem Solving and Process Improvement
- Lean Management System
Medical Center
550 Beds
850,000 SF

Average Adjusted Market Cost: $753/SF
Original Estimate: $719/SF
Allowable Cost: $654/SF (13% below market cost; 10% below original estimate)
Target Cost: 15-20% below market cost

Target Value Design: Results

TVD results are being repeated:

• Sutter Medical Center, Castro Valley
• Alta Bates Summit, Medical Center Patient Care Pavilion
• UCSF Medical Center at Mission Bay

--report forthcoming by Stephane Denerolle, from DPR & the P2SL Laboratory at UC Berkeley
Overcoming initial skepticism

Cost performance comparison of collaborative v. non-collaborative delivery methods

Change order performance comparison

Reducible change order performance (%) categorized by project management as “omissions” for CSP versus CMR projects.

Cost performance on construction projects BEFORE Target Value Design

Problematic construction projects (adapted from Forbes and Ahmed 2011, p. 57)

<table>
<thead>
<tr>
<th>Name of Project</th>
<th>Budgeted cost ($ millions)</th>
<th>Final Cost ($ millions)</th>
<th>Growth of cost (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanford Nuclear Facility (2001)</td>
<td>715</td>
<td>1,600</td>
<td>120</td>
</tr>
<tr>
<td>Capitol Hill Visitor Center (2008)</td>
<td>265</td>
<td>621</td>
<td>134</td>
</tr>
<tr>
<td>Denver Airport (1995)</td>
<td>1,700</td>
<td>4,800</td>
<td>180</td>
</tr>
<tr>
<td>Boston Big Dig (2005)</td>
<td>2,600</td>
<td>14,600</td>
<td>460</td>
</tr>
</tbody>
</table>

Cost performance on construction projects AFTER Target Value Design

Examples of cost results following Target Value Design exercises on reduction of capital cost (Glenn Ballard, *personal communication*, 2012)

<table>
<thead>
<tr>
<th>Name of Project</th>
<th>Market cost ($ millions)</th>
<th>Final Cost ($ millions)</th>
<th>Reduction of cost (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project A</td>
<td>98,000,000</td>
<td>89,200,000</td>
<td>9.0</td>
</tr>
<tr>
<td>(368,882 SF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project B</td>
<td>13,533,179</td>
<td>11,717,000</td>
<td>13.4</td>
</tr>
<tr>
<td>(114,000 SF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project C</td>
<td>13,600,000</td>
<td>11,200,000</td>
<td>17.6</td>
</tr>
<tr>
<td>(75,362 SF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project D:</td>
<td>22,000,000</td>
<td>17,900,000</td>
<td>18.6</td>
</tr>
<tr>
<td>(230,000 SF)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Target Value Design appears to have the ability to reduce first cost by 15-20%.

• Therefore, if you want to overcome the hurdle of first cost that comes with better quality facilities, consider using Target Value Design.
P2SL Sponsors
Dr. Zofia Rybkowski
zrybkowski@tamu.edu
979-446-2228 (c)
979-845-4354 (o)